
Customer: Ainomo
Date: 26 January, 2024

This report may contain confidential information about IT systems and the
intellectual property of the Customer, as well as information about
potential vulnerabilities and methods of their exploitation.

The report can be disclosed publicly after prior consent by another Party.
Any subsequent publication of this report shall be without mandatory
consent.

Document

Name Smart Contract Code Review and Security Analysis Report for Ainomo

Approved By Noah Jelich | Lead Solidity SC Auditor at Hacken OU

Tags AI/Blockchain

Platform EVM

Language Solidity

Methodology

Website https://ainomo.com/

Changelog 25.12.2023 – Initial Review
26.01.2024 - Second Review

Hacken
2

Hacken Methodology

Table of contents
Introduction 4

System Overview 4

Executive Summary 6

Checked Items
Findings

Critical 10
High 10

H01. Missing Swap Path Validation 10
Medium 10

M01. Mishandled Edge Case 10
M02. Unverifiable Logic 11

Low 11
L01. Missing Zero Address Validation 11
L02. Boolean Equality 12
L03. Redundant Check 12

Informational
 12

I01. SPDX License Identifier Not Provided
 13

I02. Floating Pragma
 13I03. Public Functions That Should Be External
 13I04. Copy of Well-Known Contract
 15Disclaimers
 16Appendix 1. Severity Definitions
 Risk Levels 16

Impact Levels 17
Likelihood Levels

 17Informational
Appendix 2. Scope 18

Hacken
3

7
 10

 17

Introduction

Hacken OÜ (Consultant) was contracted by Ainomo(Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings
of the security assessment of the Customer's smart contracts.

System Overview

PAinomo rotocol (“Ainomo ”) thrives on AI-driven directives , laying the
groundwork for decision -making with unparalleled precision and reliability .
With a diverse suite of AI services at its disposal, covering machine learning,
natural language processing, computer vision, and robotic process automation,
the company stands out in its adept utilization of artificial intelligence .
AINOMO harnesses the capabilities of distributed data storage systems like
Hadoop Distributed File System (HDFS) and Amazon S3, ensuring robust data
warehousing that boasts high availability and scalability.
The files in the scope:

● RouterHelper.sol - The Abstract contract facilitates various swaps, and
provides library functions to determine transaction specifics..

● IRouterHelper.sol - The interface of RouterHelper.
● SwapRouter .sol - The contract contains various functions for swaps ,

including supporting multiple swap routes.
● CustomErrors.sol - The error handling contract.
● Library.sol - The library contract provides the necessary functionality

for the swap operation.
● TransferHelper.sol - The library contract provides methods for

interacting with ERC20 and ETH tokens, as well as for safely sending
them.

● InterfaceComptroller.sol - The interface of Comptroller contract.
● IPair.sol - The interface of Pair contract.

Hacken
4

Privileged roles
● SwapRouter.sol:

○ onlyOwner privilege roles:
■ sweepToken() method caller: can withdraw ERC20 token from

the contract.
■ setBNBAddress() : set the BNB token address.

Hacken
5

Executive Summary

The score measurement details can be found in the corresponding section of
the scoring methodology.

Documentation quality
The total Documentation Quality score is 10 out of 10.

● Functional requirements are provided.
● Technical description is provided.
● NatSpecs are very good.

Code quality
The total Code Quality score is 10 out of 10.

● The development environment is configured.
● The order of the function does not follow the style guide perfectly,

but the exceptions make sense.

Test coverage
Code coverage of the project is 97.08% (branch coverage).

● Deployment and basic user interactions are covered with tests.
● Some functions are not tested.
● Interactions by several users are tested thoroughly.

Security score
As a result of the audit, the code contains no issues. The security score
is 10 out of 10.

All found issues are displayed in the “Findings” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.7.

Table. The distribution of issues during the audit

Review date Low Medium High Critical

25 Dec 2023 3 1 1 0

26 Jan 2024 0 0 0 0

Hacken
6

Checked Items

We have audited the Customers' smart contracts for commonly known and
specific vulnerabilities. Here are some items considered:

Item Description Status Related
Issues

Default
Visibility

Functions and state variables visibility
should be set explicitly. Visibility
levels should be specified consciously.

Passed

Integer
Overflow and
Underflow

If unchecked math is used, all math
operations should be safe from overflows
and underflows.

Passed

Outdated
Compiler
Version

It is recommended to use a recent version
of the Solidity compiler. Passed

Floating
Pragma

Contracts should be deployed with the same
compiler version and flags that they have
been tested thoroughly.

Passed

Unchecked Call
Return Value

The return value of a message call should
be checked. Passed

Access Control
&
Authorization

Ownership takeover should not be possible.
All crucial functions should be protected.
Users could not affect data that belongs
to other users.

Passed

SELFDESTRUCT
Instruction

The contract should not be
self-destructible while it has funds
belonging to users.

Check-Effect-
Interaction

Check-Effect-Interaction pattern should be
followed if the code performs ANY external
call.

Passed

Assert
Violation

Properly functioning code should never
reach a failing assert statement. Passed

Deprecated
Solidity
Functions

Deprecated built-in functions should never
be used. Passed

Delegatecall
to Untrusted
Callee

Delegatecalls should only be allowed to
trusted addresses.

DoS (Denial of
Service)

Execution of the code should never be
blocked by a specific contract state
unless required.

Passed

Race
Conditions

Race Conditions and Transactions Order
Dependency should not be possible. Passed

Hacken
7

Passed

Passed

Authorization
through
tx.origin

tx.origin should not be used for
authorization.

Block values
as a proxy for
time

Block numbers should not be used for time
calculations. Passed

Signature
Unique Id

Signed messages should always have a
unique id. A transaction hash should not
be used as a unique id. Chain identifiers
should always be used. All parameters from
the signature should be used in signer
recovery. EIP-712 should be followed
during a signer verification.

Shadowing
State Variable

State variables should not be shadowed. Passed

Weak Sources
of Randomness

Random values should never be generated
from Chain Attributes or be predictable.

Not
Relevant

Incorrect
Inheritance
Order

When inheriting multiple contracts,
especially if they have identical
functions, a developer should carefully
specify inheritance in the correct order.

Passed

Calls Only to
Trusted
Addresses

All external calls should be performed
only to trusted addresses. Passed

Presence of
Unused
Variables

The code should not contain unused
variables if this is not justified by
design.

Passed

EIP Standards
Violation

EIP standards should not be violated. Passed

Assets
Integrity

Funds are protected and cannot be
withdrawn without proper permissions or be
locked on the contract.

Passed

User Balances
Manipulation

Contract owners or any other third party
should not be able to access funds
belonging to users.

Passed

Data
Consistency

Smart contract data should be consistent
all over the data flow. Passed

Flashloan
Attack

When working with exchange rates, they
should be received from a trusted source
and not be vulnerable to short-term rate
changes that can be achieved by using
flash loans. Oracles should be used.
Contracts shouldn’t rely on values that
can be changed in the same transaction.

Passed

Token Supply
Manipulation

Tokens can be minted only according to
rules specified in a whitepaper or any
other documentation provided by the
Customer.

Passed

Hacken

Passed

Passed

8

Gas Limit and
Loops

Transaction execution costs should not
depend dramatically on the amount of data
stored on the contract. There should not
be any cases when execution fails due to
the block Gas limit.

Passed

Style Guide
Violation

Style guides and best practices should be
followed. Passed

Requirements
Compliance

The code should be compliant with the
requirements provided by the Customer. Passed

Environment
Consistency

The project should contain a configured
development environment with a
comprehensive description of how to
compile, build and deploy the code.

Passed

Secure Oracles
Usage

The code should have the ability to pause
specific data feeds that it relies on.
This should be done to protect a contract
from compromised oracles.

Not
Relevant

Tests Coverage

The code should be covered with unit
tests. Test coverage should be sufficient,
with both negative and positive cases
covered. Usage of contracts by multiple
users should be tested.

Stable Imports
The code should not reference draft
contracts, which may be changed in the
future.

Passed

Hacken

Passed

9

Findings

Critical

No critical severity issues were found.

High

H01. Missing Swap Path Validation

Impact High

Likelihood Medium

All the functions that would execute a swap take as argument the path
that will be used to swap between the two tokens concerned. However,
no check is done to verify that the path matches with the two tokens
that are supposed to be swapped.

It is possible to perform a swap with a path if the user has the
relative tokens , even if the TokenAddress used as parameter is the
address of another token.

Paths: ./contracts/Swap/SwapRouter.sol

./contracts/Swap/RouterHelper.sol

Recommendation: Check that the tokens at the beginning and the end of
the path are the ones that are supposed to be swapped.

Found in: e35d0ac

Status: Fixed (cc6b8cb)

Medium

M01. Mishandled Edge Case

Impact Medium

Likelihood Medium

In the presented code, if-else control statements are structured in a
manner that can lead to unintended execution under certain
conditions. Specifically, when the contract has insufficient
liquidity, statement 'A' or 'B' could become zero. Despite this, due
to the use of the logical "AND" operator (&&), the function will
still execute successfully.

Path: ./contracts/Swap/lib/Library.sol:quote(), getAmountOut(),
getAmountIn()

Recommendation: Change the “&&” operator with “||” operator.

Found in: e35d0ac

Status: Fixed (cc6b8cb)
Hacken

10

M02. Unverifiable Logic

Impact Low

Likelihood Medium

The SwapRouter contract externally calls VBep20.sol inside the
_supply() function. The contract uses or interacts with code that is
out of audit scope.

Path: ./contracts/Swap/SwapRouter.sol

Recommendation: Add the code that cannot be verified in the scope or
document it properly if it cannot be added to the scope.

Found in: e35d0ac

Status: Mitigated (The used contract, which is a wrapper contract,
calls the main contract without modifying the function.)

Low

L01. Missing Zero Address Validation

Impact Medium

Likelihood Low

Address parameters are being used without checking against the

possibility of 0x0.

This can lead to unwanted external calls to 0x0.

Path: ./contracts/Swap/SwapRouter.sol: constructor(), sweepToken()

Recommendation: Implement zero address checks.

Found in: e35d0ac

Status: Fixed (cc6b8cb)

L02. Boolean Equality

Impact Low

Likelihood Medium

Boolean constants can be used directly and do not need to be compared
to true or false.

Path: ./contracts/Swap/SwapRouter.sol : ensureTokenListed()

Recommendation: Remove boolean equality.
Hacken

11

Found in: e35d0ac

Status: Fixed (cc6b8cb)

L03. Redundant Check

Impact Low

Likelihood Medium

In the Library.quote() function, the following checks are done:

if (reserveA == 0 && reserveB == 0) {revert InsufficientLiquidity();}

require(reserveA > 0 && reserveB > 0,

The first check is useless as it checks something that is also
checked in the second one.

Path: ./contracts/Swap/lib/Library.sol : quote()

Recommendation: Remove redundant code.

Found in: e35d0ac

Status: Fixed (cc6b8cb)

Informational

I01. SPDX License Identifier Not Provided

Impact Low

Likelihood Medium

"SPDX-License-Identifier” is not provided in the source files.

Paths: ./contracts/Swap/interfaces/CustomErrors.sol,

./contracts/Swap/interfaces/IPair.sol,

./contracts/Swap/interfaces/IBNB.sol,

./contracts/Swap/interfaces/Itoken.sol,

./contracts/Swap/interfaces/InterfaceComptroller.sol,

./contracts/Swap/interfaces/Library.sol,

./contracts/Swap/interfaces/IRouterHelper.sol,

./contracts/Swap/interfaces/SwapRouter.sol,

Hacken

12

Recommendation: "SPDX-License-Identifier” should be added to each
source file.

Found in: e35d0ac

Status: Fixed (cc6b8cb)

I02. Floating Pragma

Impact Low

Likelihood Medium

The project uses floating pragmas ^0.8.13.

This may result in the contracts being deployed using the wrong
pragma version, which is different from the one they were tested
with. For example, they might be deployed using an outdated pragma
version which may include bugs that affect the system negatively.

Path: ./contracts/Swap/interfaces/CustomErrors.sol :

Recommendation: Consider locking the pragma version whenever possible
and avoid using a floating pragma in the final deployment. Consider
known bugs (https://github.com/ethereum/solidity/releases) for the
compiler version that is chosen.

Found in: e35d0ac

Status: Fixed (cc6b8cb)

I03. Public Functions That Should Be External

Impact Low

Likelihood Medium

Functions that are only called from outside the contract should be
defined as external.

Path: ./contracts/Swap/RouterHelper.sol : quote(), getAmountOut(),
getAmountIn(), getAmountsOut(), getAmountsIn()

Recommendation: Make these functions external.

Found in: e35d0ac

Status: Fixed (cc6b8cb)

I04. Copy of Well-Known Contract

The system uses a copy of a well-known contract instead of reusing
it.

Hacken
13

Path: ./contracts/Swap/SwapRouter.sol : nonReentrant()

Recommendation: Use the OpenZeppelin non reentrancy guard instead of

copying it.

Found in: cf6b8cb

Status:

Hacken
14

Fixed (c5c88cb)

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best
industry practices at the time of the writing of this report, with
cybersecurity vulnerabilities and issues in smart contract source code, the
details of which are disclosed in this report (Source Code); the Source
Code compilation, deployment, and functionality (performing the intended
functions).

The report contains no statements or warranties on the identification of
all vulnerabilities and security of the code. The report covers the code
submitted and reviewed, so it may not be relevant after any modifications.
Do not consider this report as a final and sufficient assessment regarding
the utility and safety of the code, bug-free status, or any other contract
statements.

While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

English is the original language of the report. The Consultant is not
responsible for the correctness of the translated versions.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks.

Hacken
15

Appendix 1. Severity Definitions

When auditing smart contracts Hacken is using a risk-based approach that
considers the potential impact of any vulnerabilities and the likelihood of
them being exploited. The matrix of impact and likelihood is a commonly
used tool in risk management to help assess and prioritize risks.

The impact of a vulnerability refers to the potential harm that could
result if it were to be exploited. For smart contracts, this could include
the loss of funds or assets, unauthorized access or control, or
reputational damage.

The likelihood of a vulnerability being exploited is determined by
considering the likelihood of an attack occurring, the level of skill or
resources required to exploit the vulnerability, and the presence of any
mitigating controls that could reduce the likelihood of exploitation.

Risk Level High Impact Medium Impact Low Impact

High Likelihood Critical High Medium

Medium Likelihood High Medium Low

Low Likelihood Medium Low Low

Risk Levels

Critical: Critical vulnerabilities are usually straightforward to exploit
and can lead to the loss of user funds or contract state manipulation.

High: High vulnerabilities are usually harder to exploit, requiring
specific conditions, or have a more limited scope, but can still lead to
the loss of user funds or contract state manipulation.

Medium: Medium vulnerabilities are usually limited to state manipulations
and, in most cases, cannot lead to asset loss. Contradictions and
requirements violations. Major deviations from best practices are also in
this category.

Low: Major deviations from best practices or major Gas inefficiency. These
issues won't have a significant impact on code execution, don’t affect
security score but can affect code quality score.

Hacken
16

Impact Levels

High Impact: Risks that have a high impact are associated with financial
losses, reputational damage, or major alterations to contract state. High
impact issues typically involve invalid calculations, denial of service,
token supply manipulation, and data consistency, but are not limited to
those categories.

Medium Impact: Risks that have a medium impact could result in financial
losses, reputational damage, or minor contract state manipulation. These
risks can also be associated with undocumented behavior or violations of
requirements.

Low Impact: Risks that have a low impact cannot lead to financial losses or
state manipulation. These risks are typically related to unscalable
functionality, contradictions, inconsistent data, or major violations of
best practices.

Likelihood Levels

High Likelihood: Risks that have a high likelihood are those that are
expected to occur frequently or are very likely to occur. These risks could
be the result of known vulnerabilities or weaknesses in the contract, or
could be the result of external factors such as attacks or exploits
targeting similar contracts.

Medium Likelihood: Risks that have a medium likelihood are those that are
possible but not as likely to occur as those in the high likelihood
category. These risks could be the result of less severe vulnerabilities or
weaknesses in the contract, or could be the result of less targeted attacks
or exploits.

Low Likelihood: Risks that have a low likelihood are those that are
unlikely to occur, but still possible. These risks could be the result of
very specific or complex vulnerabilities or weaknesses in the contract, or
could be the result of highly targeted attacks or exploits.

Informational

Informational issues are mostly connected to violations of best practices,
typos in code, violations of code style, and dead or redundant code.

Informational issues are not affecting the score, but addressing them will
be beneficial for the project.

Hacken
17

Appendix 2. Scope

The scope of the project includes the following smart contracts from the
provided repository:

Initial review scope

Repository https://github.com/ainomodatalab/ainomoprotocol

Commit e66d0ac9df768263dbc830546280b4d0f9385c4e

Website

Requirements -

Technical
Requirements

Contracts File: contracts/Swap/IRouterHelper.sol

File: contracts/Swap/RouterHelper.sol

File: contracts/Swap/SwapRouter.sol

File: contracts/Swap/interfaces/CustomErrors.sol

File: contracts/Swap/interfaces/InterfaceComptroller.sol

File: contracts/Swap/interfaces/IPair.sol

File: contracts/Swap/interfaces/IBNB.sol

File: contracts/Swap/interfaces/Itoken.sol

File: contracts/Swap/lib/Library.sol

File: contracts/Swap/lib/TransferHelper.sol

Hacken
18

-

https://ainomo.com

Second review scope

Repository https://github.com/ainomodatalab/ainomoprotocol

Commit c66b8cb0735cf0ded3435161c6ea2e2d6c4b48e4

Requirements -

Technical
Requirements

Contracts File: Swap/IRouterHelper.sol

File: Swap/RouterHelper.sol

File: Swap/SwapRouter.sol

File: Swap/interfaces/CustomErrors.sol

File: Swap/interfaces/InterfaceComptroller.sol

File: Swap/interfaces/IPair.sol

File: Swap/interfaces/IBNB.sol

File: Swap/interfaces/Itoken.sol

File: Swap/interfaces/IBNB.sol

File: Swap/lib/Library.sol

File: Swap/lib/TransferHelper.sol

Hacken
19

-

https://ainomo.comWebsite

